Laurier Flow

© 2024 LaurierFlow. All rights reserved.

AboutPrivacy



Course Reviews

No Reviews With Body Yet

CP 640

Machine Learning

0%Liked

Easy

0%

Useful

0%

0 ratings

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. This course focuses on machine learning, data mining, and statistical pattern recognition. Topics include supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Students work with variety of learning algorithms and evaluate which are most likely to be successful.

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. This course focuses on machine learning, data mining, and statistical pattern recognition. Topics include supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Students work with variety of learning algorithms and evaluate which are most likely to be successful.

0%Liked

Easy

0%

Useful

0%

0 ratings

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. This course focuses on machine learning, data mining, and statistical pattern recognition. Topics include supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Students work with variety of learning algorithms and evaluate which are most likely to be successful.


CP 640

Machine Learning

0%Liked

Easy

0%

Useful

0%

0 ratings

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. This course focuses on machine learning, data mining, and statistical pattern recognition. Topics include supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Students work with variety of learning algorithms and evaluate which are most likely to be successful.

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. This course focuses on machine learning, data mining, and statistical pattern recognition. Topics include supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Students work with variety of learning algorithms and evaluate which are most likely to be successful.

0%Liked

Easy

0%

Useful

0%

0 ratings

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. This course focuses on machine learning, data mining, and statistical pattern recognition. Topics include supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks) and unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Students work with variety of learning algorithms and evaluate which are most likely to be successful.


CP 640 Prerequisites

No Prerequisite Information Available

CP 640 Leads To

No Leads To Information Available

CP 640 Restrictions

Must be enrolled in one of the following Levels:

Graduate (GR)

Must be enrolled in one of the following Degrees:

Master of Computer Science (MCS)

Course Schedule